Biomechanical Stability of a Stand-Alone Interbody Spacer in Two-Level and Hybrid Cervical Fusion Constructs

نویسندگان

  • Daniel G. Kang
  • Scott C. Wagner
  • Robert W. Tracey
  • John P. Cody
  • Rachel E. Gaume
  • Ronald A. Lehman
چکیده

STUDY DESIGN In vitro human cadaveric biomechanical analysis. OBJECTIVE To evaluate the segmental stability of a stand-alone spacer (SAS) device compared with the traditional anterior cervical plate (ACP) construct in the setting of a 2-level cervical fusion construct or as a hybrid construct adjacent to a previous 1-level ACP construct. METHODS Twelve human cadaveric cervical spines (C2-T1) were nondestructively tested with a custom 6-degree-of-freedom spine simulator under axial rotation (AR), flexion-extension (FE), and lateral bending (LB) at 1.5 N m loads. After intact analysis, each specimen underwent instrumentation and testing in the following 3 configurations, with each specimen randomized to the order of construct: (A) C5-7 SAS; (B) C5-6 ACP, and C6-7 SAS (hybrid); (C) C5-7 ACP. Full range of motion (ROM) data at C5-C7 was obtained and analyzed by each loading modality utilizing mean comparisons with repeated measures analysis of variance with Sidak correction for multiple comparisons. RESULTS Compared with the intact specimen, all tested constructs had significantly increased segmental stability at C5-C7 in AR and FE ROM, with no difference in LB ROM. At C5-C6, all test constructs again had increased segmental stability in FE ROM compared with intact (10.9° ± 4.4° Intact vs SAS 6.6° ± 3.2°, P < .001; vs.Hybrid 2.9° ± 2.0°, P = .005; vs ACP 2.1° ± 1.4°, P < .001), but had no difference in AR and LB ROM. Analysis of C6-C7 ROM demonstrated all test groups had significantly greater segmental stability in FE ROM compared with intact (9.6° ± 2.7° Intact vs SAS 5.0° ± 3.0°, P = .018; vs Hybrid 5.0° ± 2.7°, P = .018; vs ACP 4.4° ± 5.2°, P = .005). Only the hybrid and 2-level ACP constructs had increased stability at C6-C7 in AR ROM compared with intact, with no difference for all test groups in LB ROM. Comparison between test constructs demonstrated no difference in C5-C7 and C6-C7 segmental stability in all planes of motion. However, at C5-C6 comparison between test constructs found the 2-level SAS had significantly less segmental stability compared to the hybrid (6.6° ± 3.2° vs 2.9° ± 2.0°, P = .025) and ACP (6.6° ± 3.2° vs 2.1° ± 1.4°, P = .004). CONCLUSIONS Our study found the currently tested SAS device may be a reasonable option as part of a 2-level hybrid construct, when used below an adjacent 1-level ACP, but should be used with careful consideration as a 2-level SAS construct. Consequences of decreased segmental stability in FE are unknown; however, optimal immediate fixation stability is an important surgical principle to avoid loss of fixation, segmental kyphosis, interbody graft subsidence, and pseudarthrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Two Novel Integrated Stand-Alone Spacer Designs Compared with Anterior and Anterior-Posterior Single-Level Lumbar Fusion Techniques: An In Vitro Biomechanical Investigation

Study Design In vitro biomechanical investigation. Purpose To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. Overview of Literature Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interb...

متن کامل

Biomechanical evaluation of stand-alone interbody fusion cages in the cervical spine.

STUDY DESIGN An in vitro biomechanical investigation of the immediate stability in cervical reconstruction. OBJECTIVES The purpose of this study was to compare the segmental stability afforded by the interbody fusion cage, the anterior locking plate, and the "gold standard" autograft. SUMMARY OF BACKGROUND DATA Recently, interbody fusion cage devices have been developed and used for cervica...

متن کامل

Do translaminar facet screws have the same stability as pedicle screws in two-level anterior lumbar interbody fusion? A biomechanical study.

AIM To determine whether translaminar facet screws can provide stability equivalent to pedicle screws in two-level anterior lumbar interbody fusion. MATERIAL AND METHODS We performed a biomechanical study using 12 fresh human lumbar spines and tested intact spine, stand-alone two-level ALIF and anterior fusion augmented with pedicle screws or translaminar facet screws under 400N ...

متن کامل

Do stand-alone interbody spacers with integrated screws provide adequate segmental stability for multilevel cervical arthrodesis?

BACKGROUND CONTEXT Some postoperative complications after anterior cervical fusions have been attributed to anterior cervical plate (ACP) profiles and the necessary wide operative exposure for their insertion. Consequently, low-profile stand-alone interbody spacers with integrated screws (SIS) have been developed. Although SIS constructs have demonstrated similar biomechanical stability to the ...

متن کامل

THE EFFECTS OF ANTERIOR DISCECTOMY AND INTERPOSITION AL IMPLANT UPON LUMBAR MOTION SEGMENT STABILITY

The cadaver spine motion segment behavior under torsional load was evaluated with the disc intact, with partial anterior discectomy and with spacer insertion. The results of this study explain how anterior lumbar discectomy and interbody fusion (ALIF) affects the torsional stability of the motion segment. The pseudarthrosis rate of the anterior lumbar discectomy and interbody fusion (ALIF)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017